Riverine Response of Sulfate to Declining Atmospheric Sulfur Deposition in Agricultural Watersheds.

نویسندگان

  • Mark B David
  • Lowell E Gentry
  • Corey A Mitchell
چکیده

Sulfur received extensive study as an input to terrestrial ecosystems from acidic deposition during the 1980s. With declining S deposition inputs across the eastern United States, there have been many studies evaluating ecosystem response, with the exception of agricultural watersheds. We used long-term (22 and 18 yr) sulfate concentration data from two rivers and recent (6 yr) data from a third river to better understand cycling and transport of S in agricultural, tile-drained watersheds. Sulfate concentrations and yields steadily declined in the Embarras (from ∼10 to 6 mg S L) and Kaskaskia rivers (from 7 to 3.5 mg S L) during the sampling period, with an overall -23.1 and -12.8 kg S ha yr balance for the two watersheds. There was evidence of deep groundwater inputs of sulfate in the Salt Fork watershed, with a much smaller input to the Embarras and none to the Kaskaskia. Tiles in the watersheds had low sulfate concentrations (<10 mg S L), similar to the Kaskaskia River, unless the field had received some form of S fertilizer. A multiple regression model of runoff (cm) and S deposition explained much of the variation in Embarras River sulfate ( = 0.86 and 0.80 for concentrations and yields; = 46). Although atmospheric deposition was much less than outputs (grain harvest + stream export of sulfate), riverine transport of sulfate reflected the decline in inputs. Watershed S balances suggest a small annual depletion of soil organic S pools, and S fertilization will likely be needed at some future date to maintain crop yields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface water quality is improving due to declining atmospheric N deposition.

We evaluated long-term surface water nitrate and atmospheric nitrogen (N) deposition trends for a group of nine predominantly forested Appalachian Mountain watersheds during a recent multidecadal period (1986-2009) in which regional NOx emissions have been progressively reduced. Statistical analysis showed unexpected linear declines in both annual surface water nitrate-N concentrations (mean =4...

متن کامل

Chloride Sources and Losses in Two Tile-Drained Agricultural Watersheds.

Chloride is a relatively unreactive plant nutrient that has long been used as a biogeochemical tracer but also can be a pollutant causing aquatic biology impacts when concentrations are high, typically from rock salt applications used for deicing roads. Chloride inputs to watersheds are most often from atmospheric deposition, road salt, or agricultural fertilizer, although studies on agricultur...

متن کامل

Response of lake chemistry to changes in atmospheric deposition and climate in three high-elevation wilderness areas of Colorado

Trends in precipitation chemistry and hydrologic and climatic data were examined as drivers of long-term changes in the chemical composition of high-elevation lakes in three wilderness areas in Colorado during 1985–2008. Sulfate concentrations in precipitation decreased at a rate of -0.15 to -0.55 leq/l/year at 10 high-elevation National Atmospheric Deposition Program stations in the state duri...

متن کامل

Tracing sources of streamwater sulfate during snowmelt using S and O isotope ratios of sulfate and 35 S activity

The biogeochemical cycling of sulfur (S) was studied during the 2000 snowmelt at Sleepers River Research Watershed in northeastern Vermont, USA using a hydrochemical and multi-isotope approach. The snowpack and 10 streams of varying size and land use were sampled for analysis of anions, dissolved organic carbon (DOC), S activity, and dS and dO values of sulfate. At one of the streams, dO values...

متن کامل

Sulfur Cycling, Retention, and Mobility in Soils: A Review

Sulfur inputs to forest ecosystems originate from mineral weathering, atmospheric deposition, and organic matter decomposition. In the soil, sulfur occurs in organic and inorganic forms and is cycled within and between those forms via mobilization, immobilization, mineralization, oxidation, and reduction processes. Organic sulfur compounds are largely immobile. Inorganic sulfur compounds are mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental quality

دوره 45 4  شماره 

صفحات  -

تاریخ انتشار 2016